

O grupo Elétrico.

Durante estes 100 anos de existência a EATON acumulou muito mais do que experiência.

O resultado é uma fonte única de todas as soluções para sua necessidade de energia.

DPS e DR

DPS

Dispositivo de Proteção de Surto

DR Diferencial Residual

Choque elétrico

É a passagem de corrente elétrica através do corpo humano, provocado por fuga de corrente de equipamentos ou condutores por efeitos de contatos diretos e/ou contatos indiretos.

Contato Direto

Se uma pessoa entra em contato com uma parte "viva" de um elemento sob tensão, por negligência ou desrespeito das instruções de segurança diz-se que ficou submetida a um contato direto.

Contato Indireto

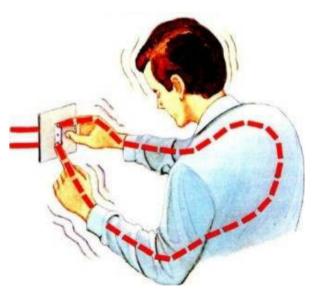
Se uma pessoa entra em contato com um elemento que está acidentalmente sob tensão, por exemplo um defeito de isolamento, a eletrocussão é consegüência de um defeito imprevisível e não da negligência da pessoa.

Corrente de Fuga / Corrente residual

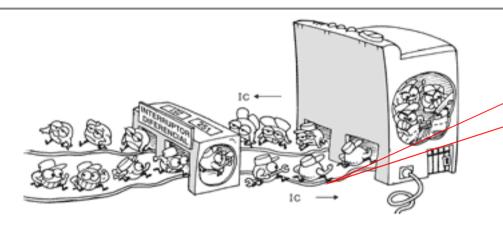
É toda corrente (energia) que foge do circuito normalmente por falha na isolação dos fios. A energia proveniente do "vazamento" pode ir para a terra através do fio terra ou na falta deste, ficar residindo na carcaça dos equipamentos (eletrodomésticos) até que alguém ao tocar o equipamento possa fazer o papel do fio terra e assim permitir a descarga da energia.

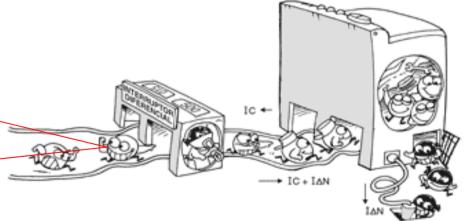


Efeitos Fisiológicos da Corrente Elétrica



Efeitos Fisiológicos da Corrente Elétrica


Acima de 1A	- Parada Cardíaca
80mA / 1A	 Danos severos Fibrilação cardíaca
50mA / 80mA	 Queima da pele Parada respiratória
30mA	 Contração muscular sem danos físicos
10mA	Desconforto (nenhum efeito perigoso)
0,5mA	 Sem reação física



A quantidade de energia fornecida ao circuito deverá ser a mesma que retorna somada aquela utilizada pelo equipamento.

O uso do DR é obrigatório conforme norma ABNT NBR 5410

Os DR detectam qualquer fuga de corrente interrompendo os circuitos elétricos.

A fuga de corrente é caracterizada quando a energia fornecida ao circuito for diferente da que retorna somada aquela utilizada pelo equipamento.

Conhecendo o Interruptor diferencial

DDR – Disjuntor diferencial Residual (com proteção curto-circuito e sobrecarga) IDR– Interruptor diferencial Residual (sem proteção curto-circuito e sobrecarga)

- *O que é:* Dispositivo para evitar a circulação de corrente que, devido à isolação imperfeita, ou contato acidental, percorre um caminho diferente do previsto.
- Para que serve: Proteção de pessoas e animais contra choques elétricos (30mA), prevenção contra incêndios (300mA) devido o aquecimento indevido e prevenção contra o aumento do consumo devido à "perda de energia".

mRCM - Interruptores Diferenciais Residuais (DR)

- Proteção contra choques elétricos: 30mA
- Proteção de instalações contra incêndio: 300mA
- Conforme norma ABNT NBR NM 61008-2-1
- Tensão nominal de operação Ue AC: 230/400V 50/60Hz
- Grau de proteção IP20

Disjuntor com Proteção Diferencial Residual até 40A

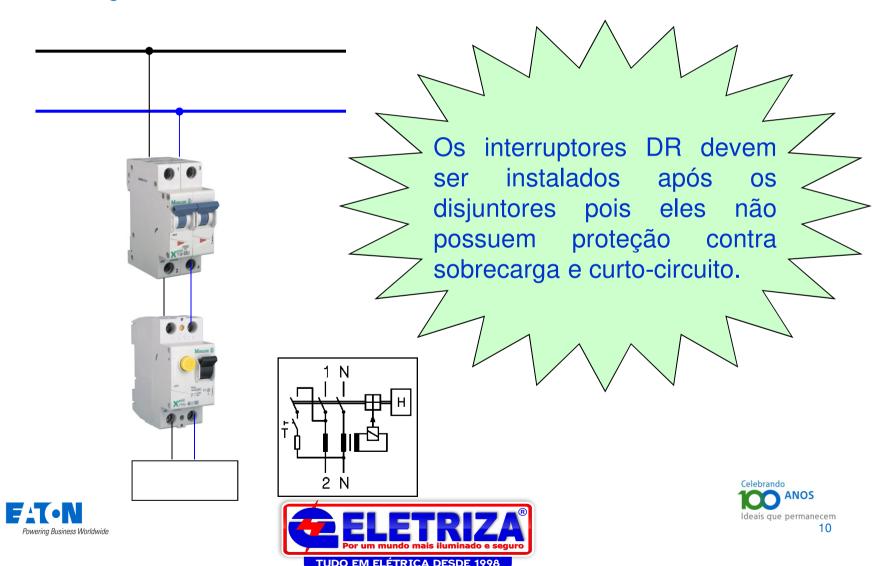
- Equipamento com proteção térmica/magnética e fuga a terra
- Conformidade com IEC 61009
- Manoplas coloridas de acordo com as correntes

Aplicação

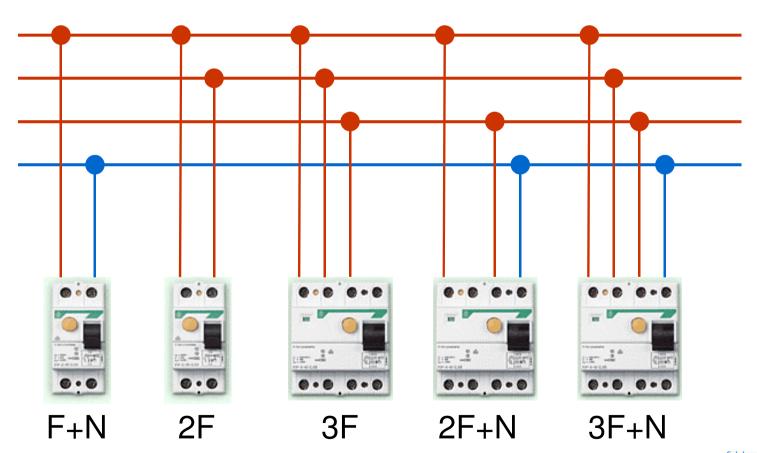
Instalação do DR – Locais mais propicios a fuga de corrente

Cozinha

Lavanderia

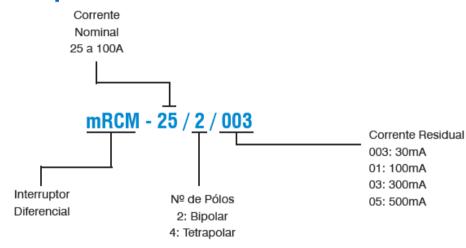

Banheiro

Instalação e Caracterísicas


Instalação do DR

Instalação e Caracterísicas

Instalação

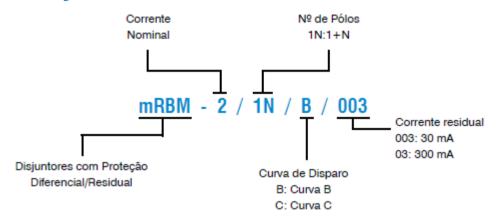


Códigos Eaton

Interruptor Diferencial Residual

Interruptores Diferenciais - Bipolar (2P)

Nº de Tanaña		lo		30mA		300mA	
pólos	Tensão	In	Código	Referência	Código	Referência	
2	380/415V	25A	142750	mRCM-25/2/003	142754	mRCM-25/2/03	
2	380/415V	40A	142756	mRCM-40/2/003	142760	mRCM-40/2/03	
2	380/415V	63A	142762	mRCM-63/2/003	142766	mRCM-63/2/03	
2	380/415V	80A	142768	mRCM-80/2/003	142772	mRCM-80/2/03	
2	380/415V	100A	142774	mRCM-100/2/003	142778	mRCM-100/2/03	



Códigos Eaton

Disjuntor Diferencial Residual

PKN - Disjuntores Modulares com Proteção Diferencial Residual

Disjuntores até 40A, 6kA/400V, Fixo, PKP6 2P

Corrente In (A)	N° de pólos	Corrente residual I∆m	Curva de Atuação	Código	Referência
10	2	30mA	В	111589	PKP62-10/2/B/003
16	2	30mA	В	111591	PKP62-16/2/B/003
20	2	30mA	В	111592	PKP62-20/2/B/003
25	2	30mA	В	111593	PKP62-25/2/B/003
32	2	30mA	В	111594	PKP62-32/2/B/003
40	2	30mA	В	111595	PKP62-40/2/B/003

Protetor de Surto DPS Eaton

SPI - Protetor de Surto Classe I

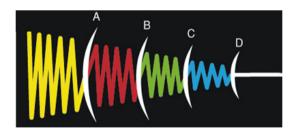
SPBT12 - Protetor de Surto Classe I + II

SPET2 / SPCT2 Protetor de Surto Classe II

- O que é: São componentes que "desviam" para a terra surtos de tensão muito elevados que possam circular pelas rede elétricas ou circuitos elétricos.
- Para que serve: Protegem as instalações e equipamentos contra queima por surto de tensão.

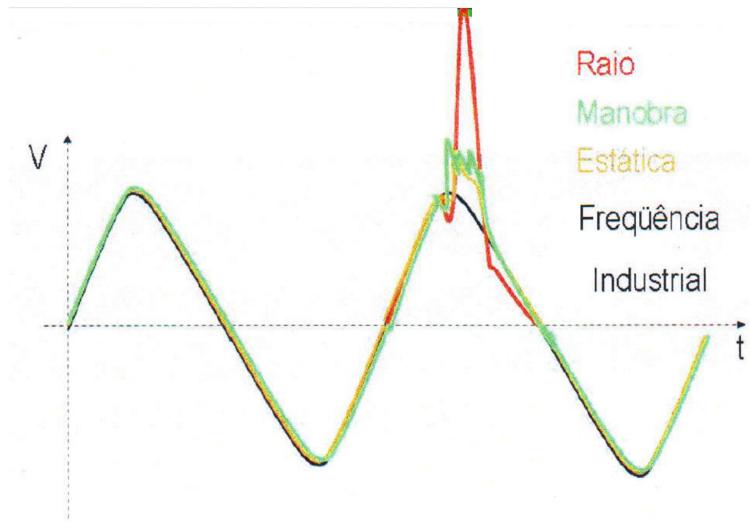
Conhecendo os Protetores de Surto

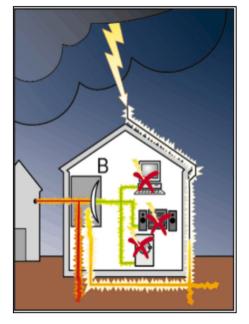
Descarga Indireta

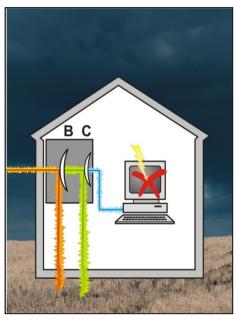

Descargas por acúmulo de eletricidade estática Induções eletromagnéticas Manobras e chaveamentos

Descarga Direta

Descargas elétricas atmosféricas (Raios


O protetores contra surtos funcionam como atenuadores que vão decrementando o surto de tensão conforme sua classificação que varia de A à D até que o surto seja totalmente extinto.





Conhecendo os Protetores de Surto

- Classe I ou "B" ou curva de impulso de corrente 10/350 µs
- Classe II ou "C" ou curva de impulso de corrente 8/20 µs

Sistemas de aterramento – NBR-5410:2004

1ª Letra:

Alimentação x Terra

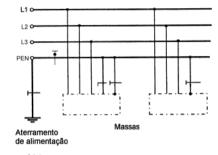
T - Sistema Aterrado

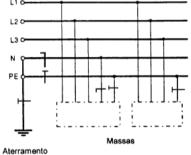
I - Sistema Isolado

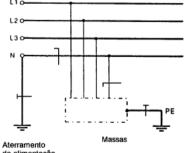
2ª Letra:

Massas x Terra

T – Diretamente aterrado ____ \


N - Ligadas ao Neutro


Outras Letras:

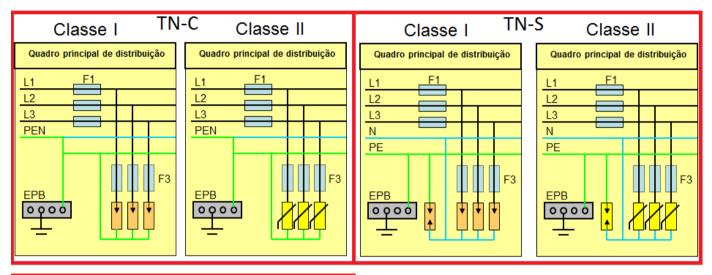

Neutro x PE

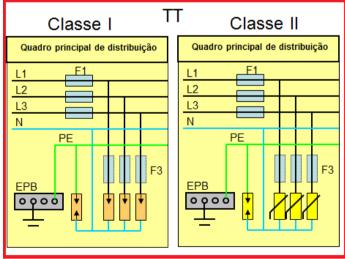
C – No mesmo condutor (PEN)

S - Condutores distintos

Por um mundo mais iluminado e seguro
TUDO EM ELÉTRICA DESDE 1998

TN-C (Neutro aterrado na alimentação e aterrado também na carga em um único condutor – Comum


TN-S (Neutro aterrado na alimentação e aterrado também na carga em condutores distintos – Separados


TT (Neutro aterrado na alimentação e diretamente aterrado na carga

Sistema de aterramento TN-C (neutro aterrado - PEN)

Especificar DPS para cada fase, não sendo necessário o específico para neutro/terra.

Sistema de aterramento TN-S (função de neutro e terra assegurado por condutores distintos)

Especificar DPS para cada fase, sendo necessário o específico para neutro/terra.

Sistema de aterramento TT (função de neutro e terra assegurado por condutores distintos)

Especificar DPS para cada fase, sendo necessário o específico para neutro/terra.

Conceitos:

Nível de proteção de tensão do DPS (Up) - Valor que é caracterizado pela limitação de tensão do DPS entre seus terminais;

Tensão de operação contínua do DPS (U_c) — Máxima tensão que pode ser aplicada continuadamente ao modo de proteção do DPS sem comprometer seu funcionamento. É a tensão nominal do DPS.

Corrente nominal do DPS (I_n) - Fração do valor de crista de uma forma de onda tempo x corrente, utilizada para ensaio e classificação de DPS classe II e subsequentes (C ou D).

Corrente de impulso do DPS (I_{imp}) – Fração do valor de corrente de pico de uma forma de onda tempo x corrente utilizada para ensaio e classificação de DPS classe I (ou B).

Determinar o valor de Uc:

• Conhecermos o modo de proteção e o esquema de aterramento da instalação.

DPS conectado entre				Esquema de aterramento				
Fase	Neutro	PE	PEN	π	TN-C	TN-S	IT com neutro distribuído	IT sem neutro distribuído
Χ	Х			1,1 U _o		1,1 U _°	1,1 U _°	
Χ		Χ		1,1 U _°		1,1 U _o	√3 U ₀	U
Χ			Χ		1,1 U _°			
	Χ	Χ		U。		U _o	U _o	

Obs:

- Ausência de indicação significa que a conexão considerada não se aplica ao esquema de aterramento.
- U é a tensão fase-neutro.
- U é a tensão entre fases.
- Os valores adequados de U_c podem ser significativamente superiores aos valores mínimos da tabela

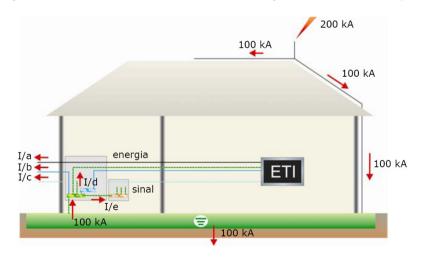
Como exemplo temos:

- Tensão da instalação: 380V;
- Esquema de aterramento empregado: TN-C;
- Modo de instalação do DPS: Entre os condutores Fase e PEN

$$Uc = 1.1 \times 220 = 242V$$

Devemos especificar um DPS que tenha valor comercialmente disponível de Uc imediatamente superior ao calculado, para este caso, 250 ou 255V.

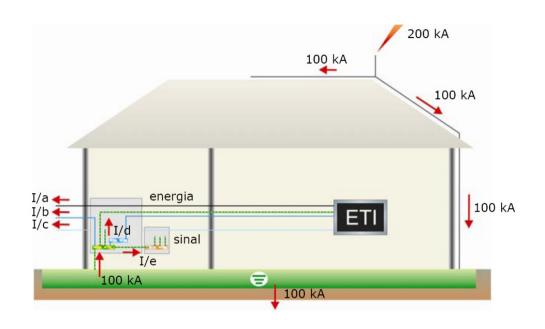
$$(Uc = 280V)$$


Especificando DPS:

Para casos de danos provocados por impacto direto na instalação, a norma 61312 convenciona:

Nível I: 200kA (10/350) μs (corrente elétrica de primeira descarga);

Nível II: 150kA (10/350) μs; Nível III: 100kA (10/350) μs;


50% se dispersa pelo solo e 50% retorna para instalação;

I/a + I/b + I/c = 100kACondição ideal:

a = 33,3kA

b = 33,3kA

c = 33,3kA

Devemos especificar um DPS que tenha valor comercialmente disponível de l_{imp} imediatamente superior ao calculado, para este caso, 33,3kA.

$$(I_{imp} = 35kA)$$

Importante:

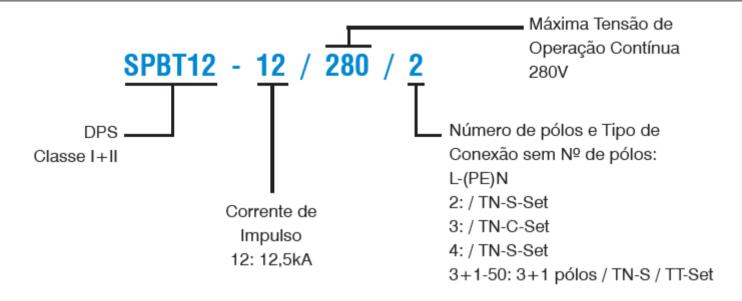
Tanto do ponto de vista técnico como econômico não existe razão para instalação de dois ou mais níveis de proteção se estes níveis de proteção estiverem muito próximos (no mesmo quadro ou em quadros com distâncias inferiores a 5m). A melhor alternativa é instalar somente o 1° nível de proteção com um conjunto DPS que tenha Up exigido para o nível de proteção mais crítico (de menor valor).

SE	F1 > F _{max}	F1 < F _{max}	F1 > F _{max}	Sem fusível de Back up
Então	F1 F2	F1	Não permitido F1	Não permitido
	① F1 > F2 ② Fmax ≥ F2 ① □	① F _{max} ≥ F1	① F _{max} ≤ F1	<u> </u>

F1 Proteção do sistema

F2 Fusível back-up do DPS

F_{max} ... Fusível back-up máximo do DPS



Chaves de Código

Protetores de surto classe I+II - Onda 10/350µs

Nº de pólos	Uc	Up	Limp 10/350µs	Código	Referência
1	280VAC	< 1,5kV	12,5kA	158306	SPBT12-280/1
2	280VAC	< 1,5kV	12,5kA	158309	SPBT12-280/2
3	280VAC	< 1,5kV	12,5kA	158330	SPBT12-280/3
4	280VAC	< 1,5kV	12,5kA	158331	SPBT12-280/4

Outras linhas de produtos Eaton

Linha Eletromec

 Marca Eletromec reconhecida no mercado com produtos voltados a proteção de circuitos elétricos www.linhaeletromec.com.br

Linha Eletromec

Fusíveis, bases e chaves seccionadoras

NH (faca lisa)

Tensão 500Vac;

Correntes de 2 a 2000A:

Fabricados conforme IEC 60269:

Tamanhos: 000, 00, 1, 2, 3, 4 e 5;

Ação: gG/gL - uso geral

aR - ultrarrápido;

Acessórios Eletromec para toda a linha NH (chaves seccionadoras, bases, link neutro, saca-fusível e indicador de operação -Microswitch).

Cartucho

Tensão 500Vca Correntes de 2 a 100A. Tamanhos: 10x38mm / 14x51mm / 22x58mm. Ação: gL/gG - uso geral

aR - ultrarrápido aM - motores

Diazed

Tensão 500Vca

Correntes de 2 a 63A.

Tamanhos: E27, E33.

Ação: gL/gG - uso geral

Linha Eletromec

Disjuntores

Mini:

1,2,3,4 polos curva C IEC 60898

ELMD

In:2 a 63A Icu 3kA

ELMDH

In(80 a 125A) Icu 6kA

Caixa Moldada

ELCM

In 16 a 1600A 3P / 4P Icu 20 / 35kA Disjuntores fixos

DPS

ELPS

Imáx 40kA / In 20kA 1P / 2P / 3P / 4P DPS classe II

DR

ELDR

25-80A

2 e 4P

30mA

Linha Eletromec – Novos produtos

Contatores ELCT - 09 - 10 - 220V

Tensão de comando: 24, 110 e 220VAC

Corrente: 9 a 95A

Contato auxiliar: incorporado / adicionais

Incorporado: 09 a 18A= 1NA

25 a 95A=1NA+1NF

Chaves de partida

Corrente: 1 a 32A

Potencias: 220V: 0,16 a 12,5cv

380V: 0,33 a 20cv 440V: 0,5 a 25cv

Relés de sobrecarga

Contato auxiliar: incorporado 1NA+1NF

3 frames: para contatores ELCT: 09 a 18A

25 a 32A

40 a 95A

Links importantes

Catálogos em Portugues

http://www.eaton.com.br/EatonBR/ProductsSolutions/Electrical/Catalogs/index.htm

Catálogos Gerais:

http://www.eaton.eu/Europe/Electrical/CustomerSupport/Catalogues/index.htm

Acesso a catálogos, equivalencias, referencias,

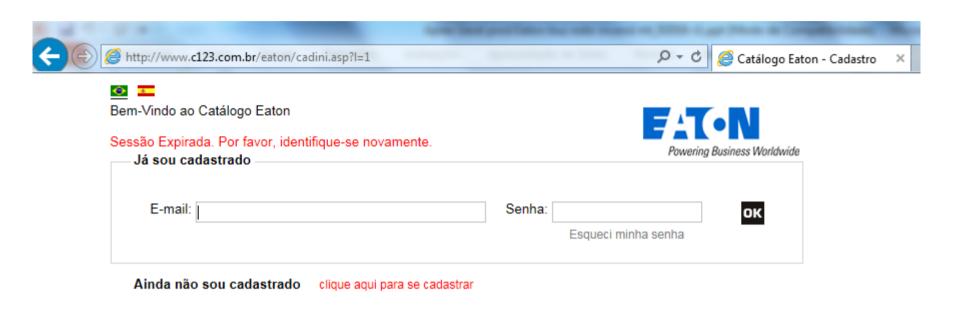
http://www.c123.com.br/eaton/cadini.asp?l=1

Ferramentas configuradores:

http://www.eaton.eu/Europe/Electrical/CustomerSupport/ConfigurationTools/index.htm

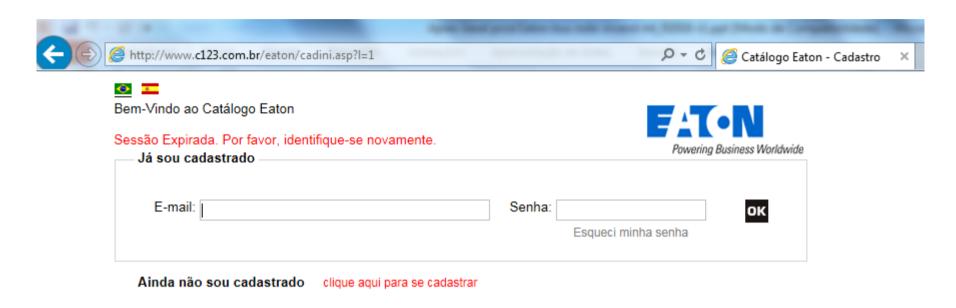
Datasheets http://datasheet.moeller.net/datasheet.php?model=232186&locale=en GB& It=

Aprovações / Certificados


http://www.eaton.eu/Europe/Electrical/CustomerSupport/ApprovalsandCertificates/index.htm

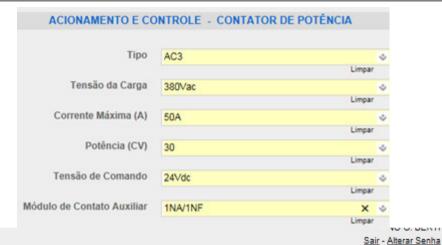
C123 = equivalência de produtos

Acesso a catálogos, equivalencias, referencias, http://www.c123.com.br/eaton/cadini.asp?l=1



C123 = equivalência de produtos

Acesso a catálogos, equivalencias, referencias, http://www.c123.com.br/eaton/cadini.asp?l=1



Exemplo de especificação: Contator

FATON Powering Business Worldwide

Código A Opção Referência Descrição P/N 277844 41 DILM50(RDC24) Contator tripolar 50A@AC3 comando 24Vdc

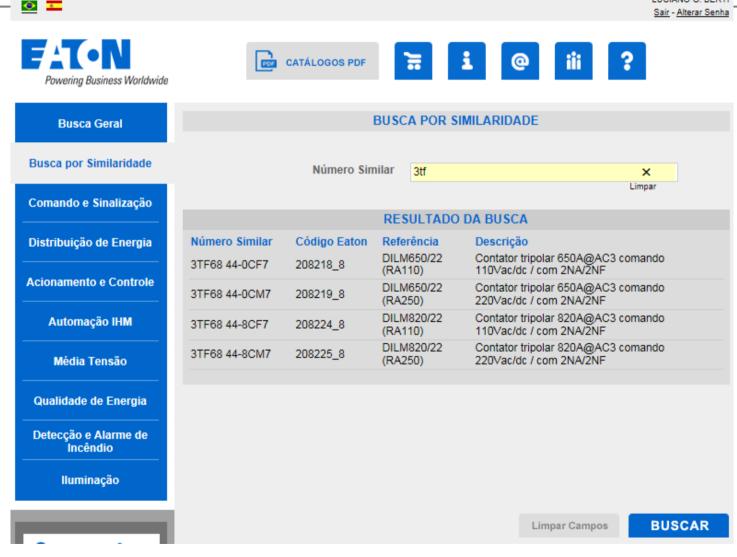
INCLUIR PRODUTOS E ACESSÓRIOS SELECIONADOS NO CARRINHO

Acessórios Cod. 277946 Ref. DILM150-XHI11 OBRIGATÓRIO 1x Bloco contato auxiliar 1NA/1NF frontal Cod. 281198 Ref. DILM65-XMV OPCIONAL 1x Intertravamento mecânico para contatores

Dados Técnicos

AC3 380Vac Tensão da Carga 50A Corrente Máxima (A) 30 Potência (CV) Tensão de Comando 24Vdc Módulo de Contato Auxiliar 1NA/1NF 1 Produto Encontrado

Grupo Acionamento e Controle


SubGrupo Contator / Contator de Potência

Preço Consulte

Similaridade = códigos equivalentes de concorrentes

EUGIANO O. BEIXTI

TUDO EM ELÉTRICA DESDE 1998

Powering Business Worldwide